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• The planner's output (plans) are detailed and 
voluminous, ranging from 1,000 to 5,000 
lines long. Plans are intended to be read by 
software, and are not designed for easy 
perusal by humans. To illustrate this, a small 
fragment of a plan is shown in Figure 1. 

• Each plan must satisfy all of the flight rules 
that characterize correct operation of the 
spacecraft. Flight rules may refer to the state 
of the spacecraft and the activities it 
performs, and describe temporal conditions 
required among those states and activities. 
Flight rules are expressed in a special-purpose 
language; an example is shown in Figure 2. 
There are over 200 such flight rules of 
relevance to the planner. 

• The information pertinent to deciding 
whether or not a plan passes a flight rule is 
dispersed throughout the plan.   

• The thorough testing of the planner yields 
thousands of such plans, spanning the wide 
range of circumstances in which the planner 
is expected to operate. 

As a consequence, manual inspection of more 
than a small fragment of plans generated in the 
course of testing is impractical. 

SOLUTION 
Our approach has been to automate the checking 
of plans. The automated system checks each plan 
for adherence to all of the flight rules input to the 
planner. This verifies that the planner is not 
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generating hazardous command sequences. The 
automated system also performs some validation 
checks. These arise from a gap between the 
"natural" form of a flight rule, and the way in 
which it must be re-encoded so as to be expressed 
to the planner. The automated system checks a 
direct encoding of the "natural" statement of the 
flight rule, thus helping validate that the planner 
and its inputs are accomplishing the desired 
behavior. 

We use a database as the underlying reasoning 
engine of our system to automatically check 
plans. To perform a series of checks of a plan, we 
automatically load the plan as data into the 
database, having previously created a database 
schema for the kinds of information held in plans. 

We express the flight rules as database queries. 
The database query evaluator is used to 
automatically evaluate those queries against the 
data. Query results are organized into those that 
correspond to passing a test, which we report as 
confirmations, and those that correspond to 
failing a test, which we report as anomalies. 

 Figure 1 – Small fragment of a plan

(#S(C-TOKEN
    :CARDINALITY :SINGLE    :NAME VAL-920
    :SV-SPEC (SPACECRAFT_ATTITUDE  SPACECRAFT_ATTITUDE_SV)
    :TYPE-SPEC ((CONSTANT_POINTING_ON_SUN
                              (HGA_AT_EARTH   BBC_DEADBAND_CRUISE)))
    :START-B-TOKEN VAL-920
    :END-B-TOKEN VAL-920
    :STATE-VARIABLE (SPACECRAFT_ATTITUDE SPACECRAFT_ATTITUDE_SV)
    :TOKEN-TYPE ((CONSTANT_POINTING_ON_SUN
                                  (HGA_AT_EARTH    BBC_DEADBAND_CRUISE)))
    :DURATION (37801 500000000)
    :START-TIME-POINT TP-1279
    :END-TIME-POINT TP-1116

 Figure 2 – Example flight rule

Every interval of  SEP_Thrusting whose 4th parameter = FIRST is "contained_by" an
interval of  Sun_Pointing with the same 1st parameter as the 1st parameter of the
thrusting interval, and with 2nd parameter = BBC_DEADBAND_IPS_TVC

(Define_Compatibility
    (SINGLE ((SEP SEP_SV))
                     ((SEP_Thrusting ( ?heading ?level ?duration FIRST))))
  :compatibility_spec
  (contained_by
    (SINGLE ((Spacecraft_Attitude Spacecraft_Attitude_SV))
                     ((Sun_Pointing ( ?heading BBC_DEADBAND_IPS_TVC))))

 

The net result is that we can quickly and 
thoroughly check each plan.  The automated 
checking code takes less than five minutes (on a 
Sun ULTRA Sparc) to perform each of several 
hundred checks of a large (5,000 line) plan and 
generate a report of the results. Plan generation is 
a search-intensive activity, and a planner is a 
complex piece of software precisely because of 
the need to perform this search in an effective 



and efficient manner.   
Conversely, once a plan has 
been generated, checking 
properties of that plan is 
relatively straightforward. 

Because the flight rules 
themselves are numerous 
and detailed, and evolve 
over the course of software 
development, we have taken 
the automation one step 
further. We generate the 
verification part of the plan-
checking code from the 
flight rules themselves, in 
the same form in which they 
are input to the planner.  
Using this capability, we are 
able to automatically regenerate the flight-rule 
checking code, whenever the set of flight rules 
input to the planner evolves. The architecture of 
this system is shown in Figure 3. 
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The pieces we had to build were: 

• The database schema to hold plan 
information. 

• Code to automatically load a plan (in the form 
output by the planner) into the database. 

• Code to automatically generate a report from 
running the database queries. A report 
contains more than simply a pass/fail result 
for the plan as a whole. For example: 

• Flight rules that are satisfied trivially are 
reported as such (e.g., the flight rule 
shown in Figure 2 would be trivially 
satisfied if the plan contained no intervals 
of SEP_Thrusting). 

• Flight rules that are satisfied by finding 
corresponding activities in the plan are 
reported as such (e.g., the flight rule 
shown in Figure 2 would be satisfied by 
finding a Sun_Pointing interval in the 
plan corresponding to an SEP_Thrusting 
interval in the plan). All such pairs of 

corresponding intervals are reported. 

PLAN

DATABASE

activities of plan
& their rationale

data

Automatic
loading of
database

database queries

Flight Rules

Automatic
translation

Database schema

Query results (confirmations with
justifications or anomalies)

Automatic analysis

PLANNER
Goals & initial
conditions

 Figure 3 - Architecture for verification of plans

Manually created

 Planner inputs
and outputs

This kind of information is useful to the 
planning team in assessing test coverage. 

• Code to automatically translate flight rules (in 
the form input to the planner) into database 
queries.  

METRICS 
The checker tool has been used during of the 
testing of the spacecraft's autonomous planner.  

• It is applied to check every flight rule input to 
the planner. There over 200 such rules. 

• It is applied to the plans generated during 
testing. To date, there have been thousands of 
such plans. 

• The checker runs somewhat faster than the 
planner; the time to check a plan typically 
ranges from 30 seconds to 4 minutes, while 
the time to generate a plan typically ranges 
from 3 minutes to 10 minutes. 

• When there is a change to the flight rules, we 
automatically regenerate the checker's 
database queries. This takes less than 10 
minutes for the entire set of flight rules. 
Complete regeneration, in response to flight 
rule changes, has been performed 3 times. 
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• The development of the checker was a 
significantly lesser effort than the 
development of the planner. The former took 
several months, the latter several years. 

• The checker was modified to accommodate a 
modest change to the plan syntax. This took 
less than 3 days to accomplish. A small 
change to the syntax of the flight rules was 
accommodated in less than one hour. 

APPLICABILITY 
Our approach has been developed for, and 
applied to, V&V of a spacecraft's autonomous 
planner. However, we believe the approach has 
much wider applicability than this one project. 
The characteristics that identify when this 
approach is worthwhile and viable are as follows: 

Worthwhile: The development of automated test 
checking code, rather than relying upon manually 
conducted checks, is warranted when: 

• There are voluminous amounts of data to 
check, either because each test run yields lots 
of data, or there are numerous test runs, or 
both. 

• The checking of a test run is complex, either 
because there are many checks to perform, or 
the checks themselves are hard to perform, or 
both. 

These conditions render manual checking 
unsatisfactory. 

A further applicability condition is that it is 
infeasible to analyze the code itself in place of 
testing the code. For our task, the planner was a 
complex piece of software, and seemed beyond 
the capabilities of present-day analysis 
techniques (such as model checking or theorem 
proving).  This rendered thorough testing, and 
therefore thorough checking of the test results, 
inevitable.  

Viable: The style of automated checking we 
developed requires the following conditions to 
hold: 

• The data to check is self-contained. That is, 

there is no need for human interaction to 
determine whether or not a check has been 
met.   (In our planner task, each plan is a self-
contained object from which it can be 
determined whether or not each flight rule 
holds.) 

• The data to check is in a machine-
manipulable form. That is, it is feasible to 
develop automated checking that will work 
directly off the form of data available, 
without human intervention.   (In our planner 
task, plans have exactly this characteristic, 
since they are intended for consumption by 
the spacecraft's automatic executive.) 

• Checking is easier than generation. That is, 
the code to check that a test run satisfies the 
desired conditions is simpler than the code 
that generates that test data.  

This has two positive consequences: 

1. The development of the automated test 
checking code will be a much lesser effort 
than the development of the system under 
test.  

2. The test checking code will run faster 
than the system under test (meaning it can 
easily keep up with the test data 
generated, and provide quick feedback to 
the test personnel). 

Our automatic generation of flight-rule checking 
code reflects the same characteristics of an 
activity that is worthwhile and viable to 
automate: 

• we have hundreds of flight rules to check 

• individual rules can be quite complex 

• the set of rules evolves over time 

• flight rules are expressed in a machine-
manipulable format   (constraints input to the 
planner) 

• the language of those rules (planner constraint 
language) is carefully proscribed so as to 
render plan generation feasible; the 
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Figure 4 – Extension to the architecture to do validation
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1. that the activities of the plan adhere to all 
the flight rules, 

2. that there is a justification recorded with 
each activity in the plan for every flight 
rule that the checker finds is applicable to 
that activity, and 

3. that every justification recorded in the 
plan can be traced back to a flight rule. 

This makes it unlikely that the checking code 
has a "blind spot" that happens to overlook a 
fault in a plan. 

The automated test checking code we 
automatically generate from planner flight rules 
checks this rationale.  

Opportunities for validation: Verification was 
the original focus of our plan checker generation 
effort.  By thorough checking of the planner's 
outputs (plans) against the flight rules given as 
input to the planner, we gained confidence that 
the internal operation of planner was correct.  
However, the effort also yielded significant 
opportunities for validation. 

Validation opportunities arose from a gap 
between the most "natural" statement of a flight 
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rule, and the form in which it must be re-encoded 
so as to be expressed to the planner. The planner 
constraint language is carefully proscribed so as 
to render plan generation feasible.  On occasion, 
a flight rule cannot be expressed directly in this 
limited language. Instead, it must be (manually) 
subdivided into several separate rules that in 
conjunction will achieve the requisite condition, 
and that individually can be expressed in the 
constraint language. Our language for expressing 
checks is more general purpose than the planner 
constraint language. This means that it is possible 
to (manually) encode an automatic check 
corresponding directly to the original flight rule. 
By following this process, we are able to validate 
that the planner, and the encodings of flight rules 
given to it, do in fact achieve the original intent. 

Note that there is a manual step to this validation 
- we must manually encode the original flight 
rules (expressed in natural language) as checking 
code. The checking code then runs automatically. 
However this manual step can take advantage of 
the framework established by the verification 
architecture and code. 

In more general terms, we see that verification 
can be extended into the realm of validation when 
the verification language is more general than the 
language of the system being verified. 

CONCLUSIONS 
Testing activities are an area ripe for insertion of 
automation. Our work automates the 
determination of whether a test run has met its 
requirements. Furthermore, we automate the 
generation of the code performing these 
determinations. We were motivated in part by 
early work in this direction, reported in [1].  

We employ a database at the heart of our 
checking tool. Our earlier pilot studies had shown 

a database could be used to provide rapid and 
flexible analysis [2]. 

Checking test runs is only a part of testing. For 
example, selecting which tests to run is an 
important decision. Other than providing some 
feedback on which requirements a test run has 
exercised, the work reported here does not 
address test selection. For a broader perspective 
on the testing of autonomous spacecraft software, 
see [3]. 
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